Бесплатный онлайн-доступ
ISSN Print: 2689-3967
|
АрхивТом 2, 2021 / Выпуск 2DOI: 10.1615/JMachLearnModelComput.v2.i2 Table of Contents:
A MACHINE LEARNING APPROACH TO QUANTIFY DISSOLUTION KINETICS OF POROUS MEDIA
Huaxinyu Wang, Chenghai Li, Wei-W. Xing, Yanan Ye, Peng Wang
Huaxinyu Wang
Chenghai Li
Wei-W. Xing
Yanan Ye
Peng Wang DOI: 10.1615/JMachLearnModelComput.2021038529
hp-VARIATIONAL PHYSICS-INFORMED NEURAL NETWORKS FOR NONLINEAR TWO-PHASE TRANSPORT IN POROUS MEDIA
Mingyuan Yang, John T. Foster
Mingyuan Yang
John T. Foster DOI: 10.1615/JMachLearnModelComput.2021038005
DATA-INFORMED EMULATORS FOR MULTI-PHYSICS SIMULATIONS
Hannah Lu, Dinara Ermakova, Haruko Murakami Wainwright, Liange Zheng, Daniel M. Tartakovsky
Hannah Lu
Dinara Ermakova
Haruko Murakami Wainwright
Liange Zheng
Daniel M. Tartakovsky DOI: 10.1615/JMachLearnModelComput.2021038577
CONSTRAINED GAUSSIAN PROCESS REGRESSION: AN ADAPTIVE APPROACH FOR THE ESTIMATION OF HYPERPARAMETERS AND THE VERIFICATION OF CONSTRAINTS WITH HIGH PROBABILITY
Guillaume Perrin, S. Da Veiga
Guillaume Perrin
S. Da Veiga DOI: 10.1615/JMachLearnModelComput.2021039837 |
Главная | Текущий год | Архив | Инструкции авторам | Submission Login | Контакты |